MidtermI.

- 1. An aqueous solution is made from 0.834~g of potassium permanganate, KMnO₄. If the volume of solution is 50.0~mL, what is the molarity of KMnO₄ in the solution? ($A_K = 39~g/mol$, $A_O = 16~g/mol$, $A_{Mn} = 55~g/mol$)

 0.106 M
- 2. How many grams of potassium dichromate, $K_2Cr_2O_7$, should be added to a 50.0-mL volumetric flask to prepare 0.025 M $K_2Cr_2O_7$ solution when the flask is filled to the mark with water? ($A_K = 39 \text{ g/mol}$, $A_O = 16 \text{ g/mol}$, $A_{Cr} = 52 \text{ g/mol}$)

 0.3675 g
- 3. What volume of $0.120\,\mathrm{M}$ sodium hydroxide, NaOH, is required to give $0.150\,\mathrm{mol}$ NaOH?

 1250 cm^3

- 4. An experiment calls for 0.0353 g of potassium hydroxide, KOH. How many milliliters of 0.0176 M KOH are required? ($A_K = 39 \text{ g/mol}$, $A_O = 16 \text{ g/mol}$, $A_H = 1 \text{ g/mol}$) 35.8 cm³
- 5. How many milliliters of 0.150 M H₂SO₄ (sulfuric acid) are required to react with 1.87 g of sodium hydrogen carbonate, NaHCO₃, according to the following equation?

$$H_2SO_4 + NaHCO_3 \rightarrow Na_2SO_4 + H_2O + CO_2$$

(Remember to balance the equation first!)

$$(A_C = 12 \text{ g/mol}, A_O = 16 \text{ g/mol}, A_H = 1 \text{ g/mol}, A_{Na} = 23 \text{ g/mol}, A_S = 32 \text{ g/mol})$$
 74 cm³

- 6. To what final volume should 25 cm³ of 2.4 M potassium dichromate, $K_2Cr_2O_7$, be diluted to give a solution that is 0.10 M $K_2Cr_2O_7$?

 600 cm³
- 7. Describe how would you prepare 1.00 L 0.120 M NaOH from a 1.20 M NaOH solution.

By mixing of 100 cm³ of 1.2 M NaOH and 900 cm³ of distilled water.

- 8. What is the molarity of a 25 m/m% ammonia solution (MM = 17 g/mol, density = 0.91 g/cm³)? 13.39 M
- 9. How many grams of sodium chloride (MM = 58.5 g/mol) are needed to react completely with a sulfuric acid solution to produce 225 cm^3 of a HCl solution (MM = 36.5 g/mol) that has a density of 1.2 g/cm^3 and has a 33.5 m/m% concentration?

10. 10 cm³ of a concentrated 37 m/m% hydrochloric acid solution (density =1.25 g/cm³) will be diluted to a final concentration of 0.8 M. MM (hydrochloric acid) = 36.5 g/mol

a, What is the m/V% of the concentrated hydrochloric acid solution?

46.25m/V%

b, How many cm³ of 0.8 M hydrochloric acid can be prepared from the 37 m/m% solution? 158.4 cm³

c, How many cm³ of water should be used for the dilution?

148.4 cm³

11.) 200 cm³ of a 1.0 M potassium hydroxide reacts with a 96 m/m% sulfuric acid solution (density = 1.84 g/cm³). MM (sulfuric acid) = 98 g/mol, MM (salt) = 142 g/mol

a) Write a balanced equation for the neutralization reaction!

 $2KOH + H_2SO_4 = K_2SO_4 + 2H_2O$

b) How many cm³ of concentrated sulfuric acid (96 m/m%) solution are needed for the neutralization?

 5.55 cm^3

c) How many grams of salt are produced?

14.2 g

Midterm II.

1. 4.89 g of metallic copper (AM = 63.5 g/mol) is added to 4.15 cm³ 67 m/m% nitric acid solution (MM = 63 g/mol, density = 1.4 g/cm³).

A. Write and balance the equation

B. Which of the reactants is the limiting reactant?

nitric acid

C. How many cm³ of gas is produced at STP (101.3 kPa and 25 °C)?

 756.9 cm^3

D. How many grams of salt are produced in the reaction?

2.90 g

E. What is the m/m% of the resulting salt?

31.25%

- 2. 1.05 g of metallic zinc (AM = 65.4 g/mol) react with 0.4 cm³ 37 m/m% hydrochloric acid $(MM = 36.5 \text{ g/mol}, \text{ density} = 1.2 \text{ g/cm}^3)$.
- A. Write and balance the equation

B. Which of the reactants is the limiting reactant?

hydrochloric acid

C. In which % was applied the reactant in excess?

560%

D. How many cm³ of gas is produced at 82 kPa and 35 °C?

 76.0 cm^3

E. What is the m/m% of the resulting salt?

21.76%

3. Iron(II) hydroxide is a precipitate that can be oxidized on air according to the following equation:

 $Fe(OH)_2 + O_2 + H_2O \rightarrow Fe(OH)_3$

A. Balance the equation.

- B. How many cm³ of oxygen gas are needed for the oxidation of 2 g Fe(OH)₂ (MM=89.85 g/mol) at 131 kPa and 50 °C?
- C. How many cm³ of 37 m/m% HCl (MM = 36.5 g/mol, density = 1.2 g/cm³) are needed to dissolve the iron(III) hydroxide formed? 5.49 cm³
- 4. Carbon dioxide resulting by thermal decomposition of 2.53 g of magnesium carbonate (MM = 84.3 g/mol) is totally absorbed in 25 g NaOH solution (density = 1.4 g/cm³)
- A. Write the equation of thermal decomposition of magnesium carbonate
- B. Write the equation between carbon dioxide and sodium hydroxide
- C. What is the m/V% of the resulting salt solution? ($MM_{salt} = 106 \text{ g/mol}$)

17.81%

5. How many g of potassium permanganate (MM= 158 g/mol) and how many cm³ of hydrochloric acid are needed to produce 2 dm³ chlorine gas at 95 kPa and 50 °C in the stoichiometric reaction of potassium permanganate with concentrated hydrochloric acid

 $(38 \text{ m/m}\%, MM \text{ hydrochloric acid } = 36.5 \text{ g/mol}, d = 1.20 \text{ g/cm}^3)$?

Balance the equation first!

 $2KMnO_4 + 16HCl = 2MnCl_2 + 2KCl + 5Cl_2 + 8H_2O$

4.47 g KMnO₄ and 18.13 cm³ HCl

6. 0.8 g of metallic aluminium (AM = 27 g/mol) is dissolved in a 52 m/m% KOH solution according to the following equation:

 $Al + OH^{-} + H_{2}O = Al(OH)_{4}^{-} + H_{2}^{\uparrow}$

A. Balance the equation

B. How many cm³ of gas is formed at STP (101.3 kPa and 25 °C)?

 1090 cm^3

- C. How many cm³ of 56 m/m% KOH (MM = 56 g/mol and density = 1.52 g/cm³) are needed for the reaction if it is used in a 20% excess? **2.34 cm³**
- 7. 3.4 g sodium nitrate (MM = 85 g/mol) is reduced to ammonia with metallic zinc and sodium hydroxide. The evolving ammonia gas is absorbed in a 65 m/M % nitric acid solution.
- A. Write and balance the chemical equation corresponding to the reduction.
- B. How many cm³ of 65 m/m% nitric acid solution (MM = 63 g/mol, $density = 1.4 \text{ g/cm}^3$) are needed to react completely with the evolving ammonia? **2.80 cm³**

Midterm III.

- 1. What is the pH of a 1.0 m/m% HCl solution (MM = 36.5 g/mol, $density = 1.1 \text{ g/cm}^3$)?
- 2. 200 cm³ of a 1.2 M sodium hydroxide solution are mixed with 7 mL of a 30 m/m% nitric acid solution (MM = 63 g/mol and density = 1.17 g/cm³). What is the pH of the solution after mixing?

14.00

3. What is the pH of:

A. solution A: a 0.20M ammonia solution ($K_b = 1.75 \times 10^{-5}$) 11.27

B. solution B: a $0.365 \text{g}/100 \text{ cm}^3$ hydrochloric acid solution ($MM_{HCl} = 36.5 \text{ g/mol}$)?

C. solution C: a mixture of 100 cm³ of solution A+ 50 cm³ of solution B?

D. How does the pH change, if we add 1 cm³ 1M sodium hydroxide solution to solution C? 9.85

4. What is the pH of:

8.74

A. a 0.06M sodium acetate solution? $(K_a = 2 \times 10^{-5})$ B. a mixture of 10 cm³ of the initial solution + 10 cm³ of a 0.02M HCl solution? C. How does the pH change, if we add 100 cm³ water to the above mixture?

5.00

no change